Skip to main content

๐Ÿงฎ Computation Graphs โ€“ Visualizing How Functions Work

๐Ÿง  What is a Computation Graph?โ€‹

A computation graph is a visual way to break down complex math into smaller, easy-to-understand steps. Each step becomes a node in the graph. It helps us:

  • See how data flows through a function
  • Track dependencies between variables
  • Prepare for backpropagation (learning!)

๐Ÿงฉ Example Functionโ€‹

We are given the function:

J(a,b,c)=3(a+bc)J(a, b, c) = 3(a + bc)

J(a,b,c)=3(a+bc)

We break this down into intermediate steps:

ini
CopyEdit
u = b ร— c
v = a + u
J = 3 ร— v


๐Ÿงฎ Given Valuesโ€‹

  • a=5a = 5a=5
  • b=3b = 3b=3
  • c=2c = 2c=2

Step-by-Step Computationโ€‹

StepFormulaResult
1u=bcu = bcu=bcu=3ร—2=6u = 3 ร— 2 = 6u=3ร—2=6
2v=a+uv = a + uv=a+uv=5+6=11v = 5 + 6 = 11v=5+6=11
3J=3vJ = 3vJ=3vJ=3ร—11=33J = 3 ร— 11 = 33J=3ร—11=33

๐Ÿ“Š Computation Graphโ€‹

Hereโ€™s how it looks visually:

text
CopyEdit
a = 5 b = 3 c = 2
โ”‚ โ”‚ โ”‚
โ”‚ โ””โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”˜
โ”‚ โ–ผ
โ”‚ [ u = b ร— c ] โ†’ u = 6
โ”‚ โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ–ผ
โ–ผ [ v = a + u ] โ†’ v = 11
โ”‚
โ–ผ
[ J = 3 ร— v ] โ†’ J = 33

Each box is a small computation. Together, they form a chain of dependencies from input to output.


๐Ÿ’ก Why Use Computation Graphs?โ€‹

  • They simplify complex math
  • They make it easy to trace and debug values
  • They're essential for automatic differentiation in deep learning

๐Ÿง  Summaryโ€‹

ConceptExplanation
Computation GraphVisual map of how a function computes
NodesEach math operation (like u = bc)
FlowArrows show how values move from inputs to output
Used ForForward pass, and later, backpropagation